На самом деле, Солнце не желтое. А какое же?

В действительности, Солнце представляет собой сразу несколько цветов: зеленый, желтый, красный и синий. Все вместе для человеческого глаза они выглядят как белый.

Именно таким видят Солнце астронавты МКС. Всем остальным, кто находится на Земле, оно кажется более желтым. Это связано с атмосферой, которая рассеивает более короткие волны сине-зеленого спектра, так что до человеческого глаза на Земле доходят только длинные волны желто-красного спектра. «Желтят» солнце и всевозможные дымы, дымки и прочие оптические загрязнители атмосферы. Вот почему в пустыне, где небо чисто и безоблачно, Солнце кажется особенно белым, то есть практически таким, каким его видно из космоса.

Солнце испускает сильный свет во всех видимых спектрах цветов – от красного до синего. При этом зеленая часть спектра в нашей звезде преобладает. За ней следует синяя часть. Так что, в целом, можно сказать, что Солнце имеет скорее зелено-синий, чем желтый цвет.

Когда Солнце находится в непосредственной близости от горизонта (при восходе и закате), оно светит на нас сквозь большую толщу воздуха и кажется нам красноватым или оранжевым. Это связано с тем, что его коротковолновые цвета зеленого и синего диапазонов рассеиваются земной атмосферой, а красный и оранжевый цвета имеют наибольшую длину волны и остаются видимы.
Большинство физических параметров звезд тут не измеряется, а рассчитывается теоретически с помощью компьютеров. Исходными данными для таких вычислений служат лишь некоторые общие характеристики звезды, например ее масса, радиус, а также физические условия, господствующие на ее поверхности: температура, протяженность и плотность атмосферы и тому подобное. Химический состав звезды (в частности, Солнца) определяется спектральным путем. И вот на основании этих данных астрофизик-теоретик создает математическую модель Солнца. Если такая модель соответствует результатам наблюдений, то ее можно считать достаточно хорошим приближением к действительности. А мы, опираясь на такую модель, постараемся представить себе всю экзотику.


    Центральная часть Солнца называется его ядром. Вещество внутри солнечного ядра чрезвычайно сжато. Его радиус равен приблизительно 1/4 радиуса Солнца, а объем составляет 1/45 часть (немногим более 2%) от полного объема Солнца. Тем не менее, в ядре светила упакована почти половина солнечной массы. Это стало возможно благодаря очень высокой степени ионизации солнечного вещества. Условия там точно такие, какие нужны для работы термоядерного реактора. Ядро представляет собой управляемую силовую станцию. 
    Переместившись из центра Солнца примерно на 1/4 его радиуса, мы вступаем зону переноса энергии излучением. Эту самую протяженную область Солнца можно представить себе наподобие стенок ядерного котла, через которые солнечная энергия медленно просачивается наружу. Но чем ближе к поверхности Солнца, тем меньше температура и давление. В результате возникает вихревое перемешивание вещества и перенос энергии совершается преимущественно самим веществом. Такой способ передачи энергии называется конвекцией, а под поверхностный слой Солнца, где она происходит, конвективной зоной. Считается, что ее роль в физике солнечных процессов исключительно велика. Ведь именно здесь зарождаются разнообразные движения солнечного вещества и магнитные поля. 
    Наконец мы у видимой поверхности Солнца. Поскольку наше Солнце – звезда, раскаленный плазменный шар, у него, в отличие от Земли, Луны и им подобных планет, не может быть настоящей поверхности, понимаемой в полном смысле этого слова. И если мы говорим о поверхности Солнца, то это понятие условное. Видимая светящаяся поверхность Солнца, расположенная непосредственно над конвективной зоной, называется фотосферой, что в переводе с греческого означает «сфера света».

 
Строение Солнца — рядовой звезды Вселенной
    1 — Протуберанец; 
    2 — Видимая поверхность Солнца. Плотность меньше — 1/1000000 г/см куб, температура 6000 К, давление 1/6 атмосферы; 
    3 — Конвективная зона. По мере приближения к поверхности Солнца температура быстро уменьшается. В результате происходит конвекция — перемешивание вещества и перенос энергии к поверхности светила самим веществом; 
    4 — Зона переноса энергии излучением. Она представляет собой как бы стенки ядерного котла, через которые энергия медленно просачивается наружу; 
    5 — Ядро Солнца — естественный термоядерный реактор, где происходит выделение энергии за счет превращения водорода в гелий. В центре ядра: плотность — 160 г/см куб, температура — 15 млн К, давление — 340 млрд атмосфер, т.е. условия точно такие, какие нужны для работы ядерного реактора; 
    6 — Фотосфера — из нее исходит большая часть излучаемой Солнцем энергии в видимой области спектра; 
    7 — Хромосфера — плотность и давление с высотой убывают, а температура возрастает; 
    8 — Корона — самый верхний слой атмосферы Солнца — состоит из чрезвчайно разреженной плазмы. Она постоянно расширяется в окружающее пространство и переходит в солнечный ветер. Во внутренней короне 1 млн К и выше.
Строение Солнца — рядовой звезды Вселенной
 


    Фотосфера – это 300-километровый слой. Именно отсюда приходит к нам солнечное излучение. И когда мы смотрим на Солнце с Земли, то фотосфера является как раз тем слоем, который пронизывает наше зрение. Излучение же из более глубоких слоев к нам уже не доходит, и увидеть их невозможно. Температура в фотосфере растет с глубиной и в среднем оценивается в 5800 К. Из фотосферы исходит основная часть оптического излучения Солнца. Здесь средняя плотность газа составляет менее 1/1000 плотности воздуха, которым мы дышим, а температура по мере приближения к внешнему краю фотосферы уменьшается до 4800 К. Водород при таких условиях сохраняется почти полностью в нейтральном состоянии. 
    Астрофизики за поверхность великого светила принимают основание фотосферы. Саму же фотосферу они считают самым нижним слоем солнечной атмосферы. Над ним расположено еще два слоя, которые образуют внешние слои солнечной атмосферы, — хромосфера и корона. И хотя резких границ между этими тремя слоями не существует, познакомимся с их главными отличительными признаками. Желто-белый свет фотосферы обладает непрерывным спектром, то есть имеет вид сплошной радужной полоски с постепенным переходом цветов от красного к фиолетовому. Но в нижних слоях разреженной хромосферы, в области так называемого температурного минимума, где температура опускается до 4200 К, солнечный свет испытывает поглощение, благодаря которому в спектре Солнца образуются узкие линии поглощения. Их называют фраунгоферовыми линиями, по имени немецкого оптика Йозефа Фраунгофера, который в 1816 году тщательно измерил длины волн 754 линий. 
    На сегодняшний день в спектре Солнца зарегистрировано свыше 26 тыс темных линий различной интенсивности, возникающих из-за поглощения света «холодными атомами». И поскольку каждый химический элемент имеет свой характерный набор линий поглощения, это дает возможность определить его присутствие во внешних слоях солнечной атмосферы. Химический состав атмосферы Солнца подобен составу большинства звезд, образовавшихся в течение нескольких последних миллиардов лет (их называют звездами второго поколения). По сравнению со старыми небесными светилами (звездами первого поколения) они содержат в десятки раз больше тяжелых элементов, то есть элементов, которые тяжелее гелия. Астрофизики считают, что тяжелые элементы впервые появились в результате ядерных реакций, протекавших при взрывах звезд, а возможно, даже во время взрывов галактик. В период образования Солнца межзвездная среда уже была достаточно хорошо обогащена тяжелыми элементами (само Солнце еще не производит элементы тяжелее гелия). Но наша Земля и другие планеты конденсировались, видимо, из того же газопылевого облака, что и Солнце. Поэтому не исключено, что, изучая химический состав нашего древнего светила, мы изучаем также состав первичного протопланетного вещества. 
    Поскольку температура в солнечной атмосфере меняется с высотой, на разных уровнях линии поглощения создаются атомами различных химических элементов. Это позволяет изучать различные атмосферные слои великого светила и определять их протяженность. Над фотосферой расположен более разреженный слой атмосферы Солнца, который называетсяхромосферой, что означает «окрашенная сфера». Ее яркость во много раз меньше яркости фотосферы, поэтому хромосфера бывает видна только в короткие минуты полных солнечных затмений, как розовое кольцо вокруг темного диска Луны. Красноватый цвет хромосфере придает излучение водорода. У этого газа наиболее интенсивная спектральная линия находится в красной области спектра, а водорода в хромосфере особенного много. 
    По спектрам, полученным во время солнечных затмений, видно, что красная линия водорода исчезает на высоте примерно 12 тыс. км над фотосферой, а линии ионизированного кальция перестают быть видимыми на высоте 14 тыс. км. Вот эта высота и рассматривается как верхняя граница хромосферы. По мере подъема растет температура, достигая в верхних слоях 50 000 К. С возрастанием температуры усиливается ионизация водорода, а затем и гелия. 
    Повышение температуры в хромосфере вполне объяснимо. Как известно, плотность солнечной атмосферы быстро убывает с высотой, а разреженная среда излучает энергии меньше, чем плотная. Поэтому поступающая от Солнца энергия разогревает верхнюю хромосферу и лежащую над ней корону. В настоящее время гелиофизики с помощью специальных приборов. Наблюдают хромосферу не только во время солнечных затмений, но и в любой ясный день. Во время полных солнечных затмений можно увидеть самую внешнюю оболочку солнечной атмосферы – корону – сияние, простирающееся вокруг затмившегося Солнца. Общая яркость короны составляет примерно одну миллионную долю света Солнца или половину света полной Луны. 
    Солнечная корона представляет собой сильно разреженную плазму с температурой, близкой к 2 млн. К. Плотность коронального вещества в сотни миллиардов раз меньше плотности воздуха у поверхности Земли. В подобных условиях атомы химических элементов не могут находиться в нейтральном состоянии: их скорость настолько велика, что при взаимных столкновениях они теряют практически все свои электроны и многократно ионизируются. Вот поэтому солнечная корона состоит в основном из протонов, ядер гелия и электронов. 
    Исключительно высокая температура короны приводит к тому, что ее вещество становиться мощным источником ультрафиолетового и рентгеновского излучения. Для наблюдений в этих диапазонах электромагнитного спектра используются, как известно специальные ультрафиолетовые и рентгеновские телескопы, установленные на космических аппаратах и орбитальных космических станциях. С помощью радиометодов (солнечная корона интенсивно излучает дециметровые и метровые радиоволны) корональные лучи просматриваются до расстояния в 30 солнечных радиусов от края солнечного диска. С удалением от Солнца плотность короны очень медленно уменьшается, и самый верхний ее слой вытекает в космическое пространство. Так образуется солнечный ветер. 
    Только за счет улетучивания карпускул масса Солнца ежесекундно уменьшается не менее чем на 400 тыс. т. Солнечный ветер обдувает все пространство нашей планетной системы. Его начальная скорость достигает более 1000 км/с, но потом она медленно уменьшается. У орбиты Земли средняя скорость ветра около 400 км/с. Он сметает на своем пути все газы, выделяемые планетами и кометами, мельчайшие метеоритные пылинки и даже частицы галактических космических лучей малых энергий, унося весь этот «мусор» к окраинам планетной системы. Образно говоря, мы как бы купаемся в кроне светила… (Масса Солнца составляет 2*10+27 т. За счет термоядерного синтеза и солнечного ветра в течении года она уменьшается на 150-200 триллионов т. 1% своей массы Солнце потеряет за 100 млрд. лет) 

Оставьте первый комментарий

Оставить комментарий

Ваш электронный адрес не будет опубликован.


*